M2000 Series

General Artificial Intelligence PID Controller

The Manual V1.0

Attention

Thank you for purchasing M 2000 series controller . This manual mainly explains some necessary attention in installation and wiring . Before operation , please read this manual first to fully understand the operation of this product . Please take this manual with you for reference at any time.

- 1.Attention!Electrical hazard! Danger
 - Do not touch the AC power terminal after the controller is electrified to avoid electric shock! When implementing controller power wiring, make sure the power is off first!
- Wanring
 Wanring
 Wanring
 Before connecting the power supply, please confirm whether the voltage is within the rated range and whether the wiring terminals are correct, or the controller may be seriously damaged after the power supply.
 - 3. The maximum torque of the
 - terminals should not exceed 8KG.
 - 4. It is strictly forbidden to decompose, modify or repair the product.
 - 5. Please do not use in the following circumstances:
 - where the temperature changes dramatically
 - places where humidity is too high and water is produced
 - a place where the vibration or impact is very strong where corrosive gases or dust are present
 - splash of water, oil and chemicals
 - 6. Wiring should be kept away from high-voltage, high-current power lines to avoid interference.
 - 7. Please note that the outer shell of the body is eroded by organic solutions, strong acids, strong alkalis

Feature

Power and Voltage	AC85-265V,50/60Hz(DC power is optional)	Display Error	±0.2%FS
Consumption	5VA Max	Input	General i nput (T/C、PT100、Analog signal) 、Double input
Control mode	PID, PD, PI, P	0.4.4	Relay, SSR, 4-20ma, SCR pulse trigger signal three-wire motor
Environment temperature	-10-50℃	Output	control
Environment Humidity	0-85%RH	Sampling time	150ms

Specification:

四、

(1) Use the slope value to compensate the offset.

(2) 2 in (input) 2 out (output): 1 to 2 isolated transmission, 2 to 2 isolated transmission; Multiple alarm modes.
 (3) The machine can transmit PV, SV and MV: forward, reverse and difference value in 8 ways.

(4) Output soft start function. (5) Dehumidification function.

Panel cut out and Dimension

Operation Instruction

NO	Symbol	Function
1	PV	Measured value/mode display
2	SV	Set values/schema content
3	OUT	The light is on when the OUT Occurs
4	AT	Autou tuning light
5	AL1	Alarm 1 indicator light
6	AL2	Alarm 2 indicator light
7		Increase buttom
8	•	Reduce buttom
9	•	Displacement buttom
10	SET	Loop/confirm buttom

六、

Input Type/Alarm mode

Туре	Symbol	Measurement Range	
К	۲	0−1370°C/0−2498°F	
J	J	0−1200°C/0−2192°F	
R	r	0−1760°C/0−3216°F	
S	S	0−1760°C/0−3216°F	
В	Ь	0−1820°C/0−3308°F	
Е	Е	0−1000°C/0−1832°F	
Т	Ł	0−600.0°C/0−1112°F	
PT100	ΡΕ	−199.9−600.0°C/−327.8−1112°F	
Cu50	Cu50	0−150.0°C/0−302.0°F	
LN	Ln	Linear analog signal 4–20MA, 0–1V, 0–50MV, 0–5V	
N	n	0−1300.0°C/0−2372.0°F	
W1	W1	0−2000.0°C/0−3632.0°F	
W2	W2	0-2320.0°C∕0-4208.0°F	

Code	AL1, AL2 Mode
0	High deviation alarm
1	Deviation low alarm
2	High absolute value alarm
3	Low absolute value alarm
4	Intraregional alarm
5	Out-of-area alarm
6	Low deviation alarm (no alarm for the first time)
7	Low absolute value alarm (not alarm for the first time)
8	Cut (T/C)alarm
9	Out-of-area alarm(no alarm for the first time)
10	One section of program over alarm
11	End of program alarm
19	Constant temperature and timing alarm

Connecting (Screw functions are subjected to the label on the back of the controller)

Input Signal Processing Point

Error code index

八、

Screen Display	Instruction	Elimination method
uuuj	The first set of sensors were disconnected, polarity reversed or out of range. The first set of input signals were higher than USP	Please check the input signal for errors and rationality
nnnl	The first set of input signals is lower than LSP	Please check the input range
ΕJΕΕ	Normal temperature compensation failure	Please check the temperature compensation diode
UUUU	Open T/C circuit	Please check T/C or compensating wire

1. Basic Operation Step 2: alarm mode setting Ad1 (Ad2 can also be set) Step 1: measure the type of input signal selection A.At the same time, press SET key + ◀ key to enter LEVEL3 A.Press SET to enter LEVEL2 B. Press SET for several times to the option of Ad1, B.Press the key < under INP and the SV display will blink and then press 4 the key, the SV display will flash. C.press Vor▲ select the type of input signal (refer to the signal C.press Vor▲select the mode you need (refer to the alarm mode selection table) input selection table) D.Press SET to confirm modification D.Press SET key to confirm modification E.At the same time, press SET + ◀key to return to LEVEL1 E.Press SET to return to LEVEL1 Step 3: Set alarm value AL1 (AL2 can also be set) A.Press SET key several times to AL1 option, and then press Note: the value of AL1 and AL2 in alarm mode 0,1,4,5,6, the ◀key again, the first digit of SV display will flash. 9 is the deviation value of SV ;In mode 2,3,7, is the B.Press \blacktriangle or \triangledown to SET the value, and then press the key to next absolute temperature of alarm ;Nostandard at mode 8; digit and do the same setting . C.After setting, press SET key to confirm. Both AL1 and AL2 can choose alarm mode 10, which can be used as the end of alarm or choose mode. At 11, no D.Press SET to return to LEVEL1 setting is required as the alarm at the end of the program. Step 4: program process curve and operation A.At LEVEL1 B.Press SET key several times to ct C. according to the requirements of process, design many groups of curve in advance, and then press SET key to $\boxed{C01}$, press \blacktriangleleft keys used \blacktriangle in the first SET of temperature at either end of the first paragraph, then press the SET button to enter 101 items with the same operation in the end of the first group of the first period of time, the first paragraph OU01 high output range (0-100.0) so on, completed the first SET of multistage presets. D. Noted that when the number of segments is finish preseting, CX, TX and OUX of the next segment must all be put"0" as the isolation segment and mark between groups. E. 90 is the maximum segment can be programmed, and can be grouped and set only in range of 90. F. <u>CAL</u> menu is the first section number of the startup operation group. For example, in section 15 of the third set of preset process, select the third set of <u>CAL</u> = 15 to startG.If the program needs to start from 0, put the STA item into 1; if PV is needed, put the STA item into 2 or 3Program control END mode has two options. H. The program can select SN during operation, Within the range of this group segment number, can change its current segment number to run forward or backward; Select the ST_item to manually modify the countdown of the current running segment. I. To start/end the program, please press SET key and 🔺 key at the same time to select. J. Press the button 🔺 to pause/continue the program. K. To ensure the constant temperature period during the heating process, you can select WB item and place it into the waiting temperature zone $(0.1-10^{\circ}C)$, which is invalid when WB=0 L.According to ON/OFF mode of external start terminalor connect time can select. • Press the key once (3-4 seconds) to start the program control ; if press the button once (3-4 seconds) to end the program control; during the program control operation • Press the key once (1-2 seconds) to stop the program control. If press next time program control to continue to run. Step 5:1. Automatic calculus (AT) A. When field conditions permit, please try your best to carry out self-tuning work of AT parameters. It is better to install loads equal to practical ones in the object. B. This AT calculation cannot fail in the process of thermal parameters. C. The maximum value of the process curve should be about 80% of the range of instrument detection. D. Before the program is not started (fixed value control STA=0), it is better to carry out AT around the maximum value of the process curve (SV=0.3). E.In LEVEL1 process, press SET key several times to reach AT option, then press \triangleleft and \blacktriangle to put "1" to start AT calculation. F.This machine is used as a fixed value control when $\boxed{\text{STA}} =$ "0", and as a program controller when $\boxed{\text{STA}} =$ 1, 2, 3. G. Once the controller is powered on, as long as STA does not equal 0(the program control machine does not start the program operation, the controller has no output. 2. Advanced operation 1) manually modify PID parameters. At LEVEL1, press SET key for 5 seconds to enter LEVEL2. Press SET key to select P,I and D parameter options and SET them. 2)Indoor temperature display correction If the input terminal is short, the value displayed by the instrument should be approximately room temperature. If there is a big difference, please press SET key and key 🔻 to enter LEVEL4 at the same time. Then press SET key several times to find TM1 and TS1 options 3)Fast search for preset or modified segment parameters The maximum programming is 90 segments, and the SET key can only to segment number per press. For fast programming, the following methods are adopted: When press the SET key to enter the menu of the programming area, each press \blacktriangle or \checkmark key once can increase COX by 10(C1X...CNX) or decrement (C90, C50, C10). When entering the predetermined 10 segments, use SET key to step through the modification. No matter whether the current main screen is in the programming area or in the second or third process, if you press the key \blacktriangle at the same time, it will immediately return $\frac{P_V}{P_V}$. 十、 Operation process Schematic diagram of each *no keys pressed for 60 seconds LEVEL1 stratum Automatic return to LEVEL(main setting Master mode layer) Press SED and

time

LEVEL3

Tune parameter mode

Press SED and C at the same

Press SED and

at the same time.

at the same time

LEVEL4

PV2 parametric mod

Press for 5 sec

LEVEL2

Control parameter me

Press SED and

at the same time

and the end time is t2. In the third stage, the terminal temperature is C3 and the terminal time is t3. In the fourth section, the terminal temperature is C4 and the terminal time is t4. In paragraph 5, the terminal temperature is C5 and the terminal time is t5. The second set of seven sections: the first section, the end temperature is C6 and the end time is t8. In the third section, the end temperature is C9 and the end time is t8. In the third section, the end temperature is C9 and the end time is t8. In the third section, the end temperature is C10 and the end time is t10. In paragraph 5, the terminal temperature is C11 and the end time is t10. In paragraph 5, the terminal temperature is C12 and the terminal time is t12. In the second segment, the end time is t13. The third sect of three sections: the first section, the end temperature is C15, the end time is t15. In the second segment, the end temperature is C16 and the end time is t10. In the third section, the end temperature is C16 and the end time is t10. In the second segment, the end temperature is C16 and the end time is t19. In the second segment, the end temperature is C19 and the end time is t20. In the third section, the terminal temperature is C21 and the end time is t21. In the fourth section, the terminal temperature is C20 and the end time is t20. In the third section, the terminal temperature is C21 and the terminal time is t21. In the fourth section, the terminal temperature is C21 and the end time is t21. In the fourth section, the terminal temperature is C23 and the terminal time is t23.

Case 4. Difference transmission (dual-input model applicable) This machine in the griginal trans for on the basis of a new set of	Case 5. double-group output (auxiliary control ratio coefficient)(suitable for 301/801/901 model)
 and negative 4-20MA difference value transfer (PV1-PV2)=A1	When your system requires sub-control ratio factor, please operate the instrument in the following order: Set SV value \longrightarrow press SET key to find \boxed{KV} at LEVEL3 and SET sub-control distribution coefficient value (the output of the first group is in a certain ratio to the output of the second group) (for example, if the first group is required to output fully, and the second group is required to output half, just set \boxed{KV} to 50) \longrightarrow once the setting is completed, the sub-control ratio coefficient will be immediately implemented (another group of output can be provided, which is completely proportional to the output of the main control).

M2000 series - MODBUS communication protocol

- Summary of the agreement

- 1. Scope of selection: pan-globe M2000 series communication instrument
- 2. Work realization: data exchange between instrument and host computer (instrument can only be used as slave to receive interrogation and reply)
- 3. Serial transmission mode: RTU
- 4. Transmission interface: RS485
- 5. Communication medium: shielded twisted pair

6. Communication stack number: 1~255. The upper limit of the number of connecting meters is related to the load capacity of the host

7. Function code implementation: read hold register (03), write single register (06), write multiple registers (10)

8. Data length: 1) when writing data to the machine, a maximum of 16 consecutive menus (32 bytes) can be written at one time. 2) when reading the menu data inside the machine, the non-programmed menu can read 16 consecutive menus at a time (the unrealized address outside the parameter address table is 0), while the programmed menu can only read 16 consecutive menus at a time 9. Numerical format: signed 16-bit binary complement; The data read is 10.0 times larger; Before writing the data, enlarge the data 10.0 times before sending it; Notice the transition

10.serial port parameters: 1), baud rate :4800, 9600, 19200, 38400, 76800, 153600 2) start position: 1 3) data bit: 8 4) check bit: E(even check), N(no check) 5) stop bits: 1, 2

11. Frame check method: cyclic redundancy check (CRC16)

12. Message format (N=2 here)

8bit 8bit N × 8 bit 16bit	Address	Function code	Data	CRC Inspection
	8bit	8bit	N $ imes$ 8 bit	16bit

Note: 1x read AM and AM1(cold control manual) menus,0 represents manual state,1 represents automatic state.

2. RAP is the program control menu, read, return 0X0000 represents the program control close, return 0X0001 represents the program control start: write 0X0000 to close the program control, write 0X0001 to start the program control, write 0X0002 to stop the program control, write 0X0002 to end the suspension, continue to run the program control.

- Support and control, while oxobool of each established on the control of the the program controlled menu.
 Before writing MV/MV1 threshold, please first write 0x0000 to AM/AM1 to make the system switch to manual control. 5. When the multiplier is 10, the returned data is magnified 10 times.

6, PV1 and PV2 are read-only parameters.

7. There should be a time interval between write parameter instructions, no matter the same address or not, which may cause instrument failure, and the time interval should be no less than 150 milliseconds.

\equiv , The instance/example

1 , Function code 03(read the set value SV=100.0):

Request		Response		
Field name	(Hexadecimal)	Field name	((Hexadecimal)	
Number	01	Number	01	
Function code	03	Function code	03	
Start Address Hi	00	Byte count	02	
Start Address Lo	04	Register value Hi	03	
Register number Hi	00	Register value Lo	E8	
Register number Lo	01	CRC Lo	B8	
CRC Lo	C 5	CRC Hi	FA	
CRC Hi	СВ			

2、Function code 06(read the set value SV=100.0):

Reque	est	Response		
Field name	(Hexadecimal)	Field name	(Hexadecimal)	
Number	01	Number	01	
Function code	06	Function code	06	
Start Address Hi	00	Start Address Hi	00	
Start Address Lo	04	Start Address Lo	04	
Register number Hi	03	Register value Hi	03	
Register number Lo	E8	Register value Lo	E8	
CRC Lo	C8	CRC Lo	C8	
CRC Hi	B5	CRC Hi	B5	

3 v Function code 10(read the set value SV=100.0)):

Request		Response		
Field name	(Hexadecimal)	Field name	(Hexadecimal)	
Number	01	Number	01	
Function code	10	Function code	10	
Start Address Hi	0 0	Start Address H	00	
Start Address Lo	04	Start Address Lo	04	
Register number Hi	00	Register number Hi	00	
Register number Lo	01	Register number Lo	01	
Byte count	02	CRC Lo	40	
Register value Hi	03	CRC Hi	08	
Register value Lo	E8			
CRC Lo	Α7			
CRC Hi	6A			

 \equiv , Signed parameter address allocation table (" NC "means the address is empty)

	Ac	ldress	Read / write		Ratio (No
parameter name	Hexadecimal	Decimalism	state	Ratio	Range)
MV	00H	0	R/W	10^{\odot}	0~100
MV1	01H	1	R/W	10	
PV1	02H	2	R	10	LSP~USP
PV2	03H	3	R	10	LSP~USP
SV	04H	4	R	10	LSP~USP
NC	05H	5	R		
AD1	06H	6	R/W	1^{\odot}	0-11
AL1	07H	7	R/W	10	$-1999 \sim 9999$
HY1	08H	8	R/W	10	LSP~USP
AD2	09H	9	R/W	1	0-11
AL2	OAH	10	R/W	10	-1999~9999
HY2	OBH	11	R/W	10	LSP~USP
A/M	0 C H	12	R∕W	1	0/1
ΑT	ODH	13	R∕W	1	0/1
Р	0 E H	14	R/W	10	0.1~3600
Ι	0FH	15	R/W	10	0~3600
D	10H	16	R/W	10	0~3600
OUD	11H	17	R/W	1	0/1
СҮТ	12H	18	R/W	10	0~200
INP	13H	19	R/W	1	0~9
LSP	14H	20	R/W	10	$-1999 \sim 9999$
USP	15H	21	R/W	10	$-1999 \sim 9999$
OUL	16H	22	R/W	10	0~100
OUH	17H	23	R/W	10	0~100
ΤH	18H	24	R/W	1	0~8
KU	19H	25	R/W	10	0.1~300
TRL	1 A H	26	R/W	10	LSP~USP
TRH	1BH	27	R/W	10	LSP~USP
T M 1	1 C H	28	R/W	10	LSP~USP

TS1	1 DH	29	R/W	10	-200~1000
TM2	1 E H	30	R/W	10	LSP~USP
TS2	1 FH	31	R/W	10	-200~1000
TM3	20H	32	R/W	10	LSP~USP
TS3	21H	33	R/W	10	-200~1000
RAP	22H	34	R/W	1	0 ~ 2
STA	23H	35	R/W	1	0~3
CAL	24H	36	R/W	1	1~90
SN	25H	37	R/W	1	1~90
WB	26H	38	R/W	10	0~3600
KP	27H	39	R/W	10	0.1~100
ΕK	28H	40	R/W	10	0~3600
RE	29H	41	R/W	1	0~255
END	2AH	42	R/W	1	0/1
C_0	2BH	43	R/W	1	0~3
PMA	2CH	44	R/W	1	0/180
KO	2DH	45	R/W	1	0~255
SFT	2EH	46	R/W	1	0~99
DP	2FH	47	R/W	1	0~3
MAN	30H	48	R/W	1	0/1
INP2	31H	49	R/W	1	0~9
LSP2	32H	50	R/W	10	$-1999 \sim 9999$
USP2	33H	51	R/W	10	-1999~9999
PVS2	34H	52	R/W	10	-50~50
CYT2	35H	53	R/W	10	0~200
GAP	36H	54	R/W	10	$-50 \sim 50$
Рс	37H	55	R/W	10	0.1~3600
Ιc	38H	56	R/W	10	0~3600
Dc	39H	57	R/W	10	0~3600

Note:1: No symbol ; 10:With symbol

Program menu address: CX=(X-1)*12+256,X is segment number:C90,X=90,Input RangeLSP~USP;

 $TX = (X-1)^{*}12 + 260$, Input Range ($0 \sim 9999$) OUX = (X-1)^{*}12 + 264, Input Range ($0 \sim 100$)

INP(INP2)Enter corresponding form

b	0	j	5
S	1	k	6
r	2	pt	7
t	3	си	8
е	4	ln	9
n	10	w 1	11
w2	12		