MG900R系列双输出专用型 多功能高精度PID控制器-AX

使用说明书 V4.0

感谢您购买MG900R系列控制器。这个说明书主要是说明 在安裝及配线时的一些必要注意事项,在操作之前,请先阅 读本说明书,以充分了解本产品的操作程序,请带着说明书以 便可随时参考。

注意事项

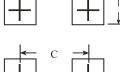
. 危险 1. 注意! 感电危险!

控制器送电后请勿触摸AC电源接线端子,以免遭受电击! 在实施控制器电源配线时,请先确定电源是关闭的!

- 1. 请不要在充滿爆炸及易燃烧气体的地方使用本产品。
- 2. 在接上电源前, 请先确定电压是否在额定范围内, 接线端子是否正确, 否则送电后控制器可能造成严重损坏。 3. 端子的最大扭力不能超过8KG。
- 4. 严禁分解、改裝及修理本产品。 5. 请不要在下列环境下使用:

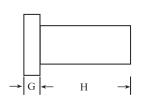
- 5. 请不要在下列环境下使用:
 ●温度变化很激烈的地方
 ●湿度过高而且会产生水的地方
 ●振动或冲击很强烈的地方
 ●有腐蚀性气体或粉尘存在的地方
 ●有水、油、化学药品飞溅的地方
 6. 配线请远离高压,大电流的动力电源线以避免干扰。
 7. 请注意本体的外壳会受到有机溶液、强酸、强碱所侵蚀。

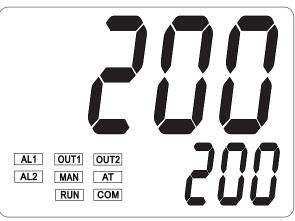
主要性能与功能


电源电压	AC85-265V, 50/60Hz (DC power为选购品)	显示精度	±0.2%FS
消耗电力	6VA Max	主控输入种类	通用输入(T/C、PT100、类比信号)
控制方式	PID、PD、PI、P、Fuzzy(OPAD)	输出	继电器、SSR、4-20mA
使用环境温度	-10-50°C	相!! 江	
使用环境湿度	0-85%RH	输入信号采样周期	150ms

综合特点:

- (1) 信号输入: 热电偶和热电阻可随意切换(不须修改硬件)。
- (2) 采用斜率值补正温度。
- (3) 加入人工智能 OPAD 防超调系数。
- (4) 本机可对PV、SV、MV三个参量正、反向6种传送方式。
- (5) 本机有仪表运行参数RUN, 可选择仪表是否工作。
- (6) 输出软启动功能。


盘面开孔及外形尺寸



型号	Α	В	С	D	E	F	G	Н
MG904	45+0.6	45+0.6	≥60	≥60	48	48	4. 1	71
MG907	68+0 6	68+0 6	≥80	≥80	72	72	4 1	71
MG908	45+0.6	92+0.8	≥60	≥130	48	96	4. 1	71
MG909	92+0.8	92+0.8	≥130	≥130	96	96	4. 1	71

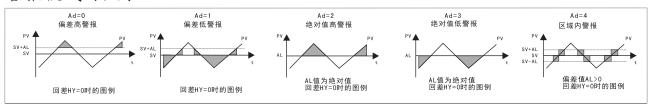
四、操作面板功能说明

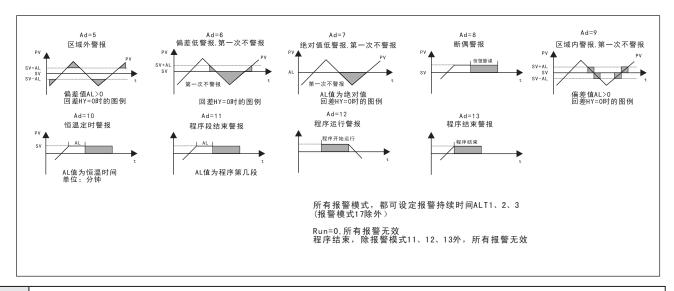
PV

SV

MG907/MG904视窗

符号	名称	功能说明
SET	循环/确认键	改变参数时,确定参数
A/M	手动/自动键	自动与手动控制切换
<	移位键	移动设定值的位数(个,十,百,千)
_	增加键	增加参数屏幕内的数据
~	减小键	1,减小参数屏幕内的数据 2,于参数流程时,为后退键功能
PV	测量值(PV)/ 参数名称显示	1,显示测量值PV 2,各种参数设定时,显示参数名称 3,异常时显示各种异常类型
sv	设定值(SV)/ 参数显示	1,显示设定值SV 2,参数设定时显示设定参数值
MV	输出值	显示输出量/实际输出测量值
COM	通信指示灯	通信连接时显示

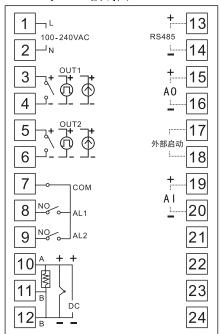

符号	名称	功能说明
	程序上行指示灯	程序升温段执行
-	程序平行指示灯	程序恒温段执行
*	程序下行指示灯	程序降温段执行
AL1	报警1指示灯	警报1执行
AL2	报警2指示灯	警报2执行
OUT1	控制输出1指示灯	闪亮时表示阀门正转执行
OUT2	控制输出2指示灯	闪亮时表示阀门反转执行
MAN	手动指示灯	手动控制执行
AT	自整定指示灯	PID自整定执行
RUN	控制器运行指示灯	运行


五、 信号输入/报警模式选择表

输入种类	符号	范 围
K	۲	-270 -1370℃/0-2498℉
Т	Ł	-270-600.0℃/0-1112℉
PT100	PΕ	-199. 9-600. 0℃/-327.8-1112℉

代 码	AL1、AL2模式说明
0	偏差高报警
1	偏差低报警
2	绝对值高报警
3	绝对值低报警
4	区域内报警
5	区域外报警
6	偏差低报警(第一次不报警)
7	绝对值低报警(第一次不报警)
8	断偶报警
9	区域内报警(第一次不报警)
10	恒温定时报警
11	程序段结束报警
12	程控运行报警
13	程控结束报警

警报模式对照表

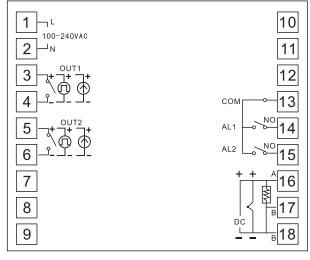


故障讯息

讯息	说 明	排除方法	
إددد	输入1感测器断线,极性反接或超出范围 第一组输入讯号高于USP	请检查输入讯号有无错误 请检查输入是否合理	
nnnl	第一组输入讯号低于LSP	请检查输入范围是否合理	
EJEE	冷接点补偿失败	请检查温度补偿二极体是否不正常	
טטטט	热电偶回路开路	请检查热电偶或补偿导线是否断开	

接线图(端子功能以机器后面标签为准) 七、

1、MG909与MG908接线图

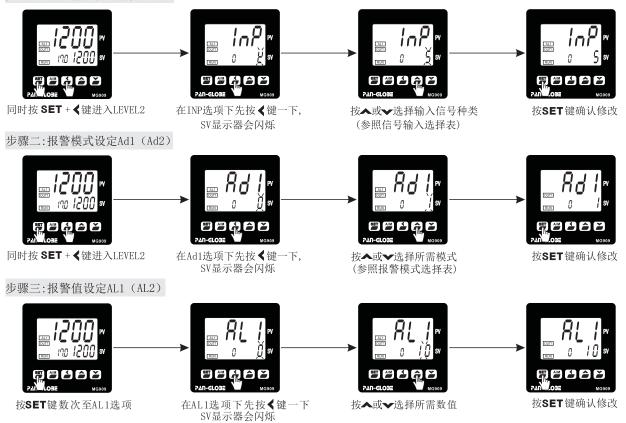

4、接线注意事项

⚠ 注意

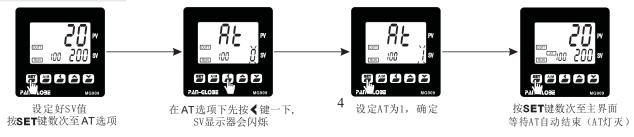

- ■在接线前一定要切断电源。否则,可能引起电击。 ■接线后,通电时不要触摸端子或其他的带电部件。 否则,可能引起电击。
- (1)根据温度控制器上的端子排列图,仔细检查和确认接线正确。(2)对于热电偶输入,使用与热电偶类型匹配的补偿导线。
- (3)对于铂电阻输入,每根引线电阻应小于5欧姆3根引线应该具 有相同的电阻。 (4)输入信号线绝不能与强电线路同在一个导线管或者电缆中铺设。 (5)使用屏蔽电缆(单点接地)能有效抗静态感应噪音。

- (6)对于电源,使用截面积大于1mm、绝缘600V的导线。

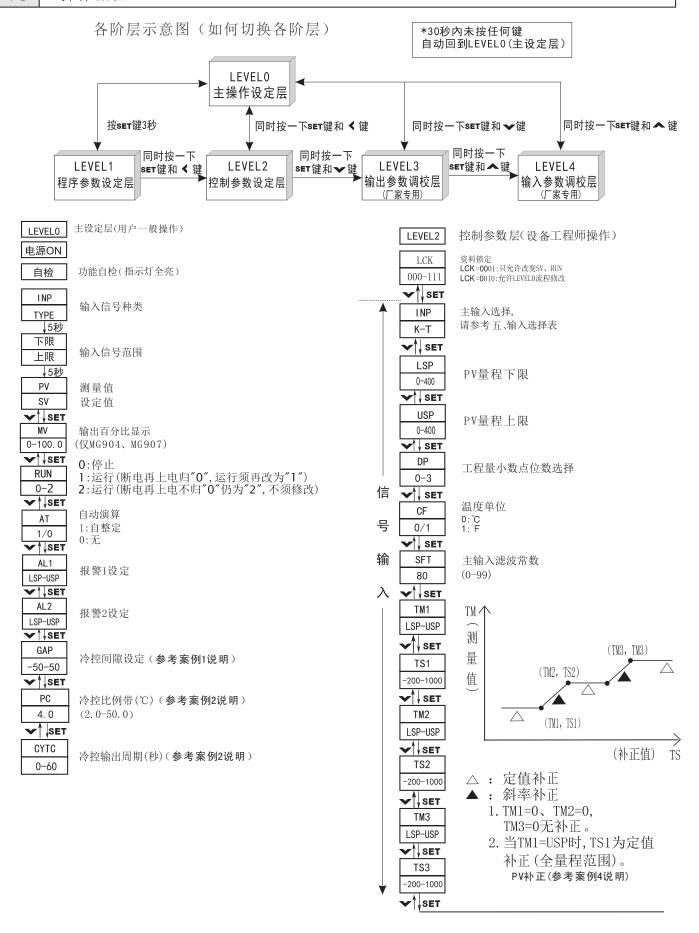
2、MG907接线图

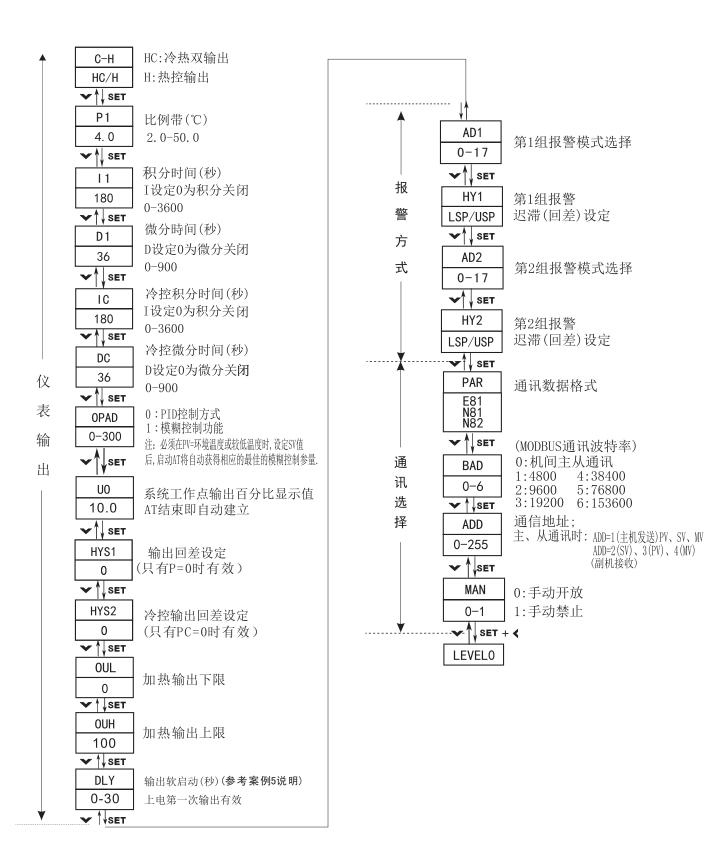

3、MG904接线图

八、 按键操作说明

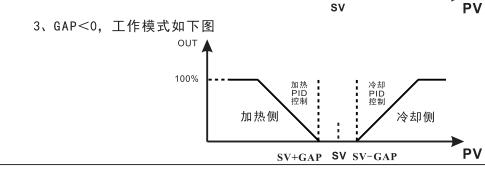

1. 基本操作

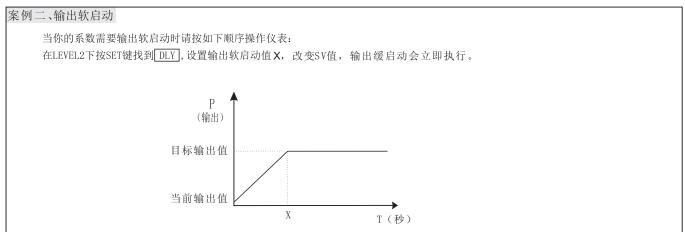
步骤一:测量输入信号种类选择




注:AL1、AL2数值在报警模式0,1,4,5,6,9时为SV的偏差值;在模式2,3,7时,为报警的绝对值温度;在模式8时沒有规定;在模式10时,AL1、AL2为时间,单位是分钟;AL1、AL2均可选报警模式11,作为某段运行结束报警;模式12、13时,无须置数作为程序开始/结束报警。

步骤四: 自动演算 (AT)


九、操作流程



十、 应用实例说明

案例三、温度补正设置

空白区:表面温度 (实际应用区)

黑区: T/C测量温度 (实际加热区)

【一大的川然区) T/C测量温度(实际加热区)和表面温度(实际应用区)之间有温差。以客户设备为例,客户需要的是表面的实际温度(实际应用区),也就是上图空白区域。而T/C只能放在实际加热区,也就是上图的黑色区域内。而这之间有一定的温度误差,因为T/C不能放在表面测量,应如何实现?

假设客户需要的表面温度(实际应用区)为 100°150°200°之间, 请解决。

1,首先实际测量的表面温度(实际应用区)和T/C测量的温度(实际加热区)两者之间的关系如下 T/C测量温度 表面的实际温度 两者的关系 105° 100° T/C的温度比实际温度高5° 两者的关系 T/C的温度比实际温度高5° T/C的温度比实际温度高6° 156° 150° T/C的温度比实际温度高7° 207° 200°

(200°) (207°) (150°) (156°) (100°) (105°) 上一排:客户需要虚拟实际温度 下一排:T/C实际测量温度

3. 当仪表SV设为100时,控制PV到100时 虽然实际加热控温区(T/C测量的温度)为100+5=105° 但是显示的PV为100° 为实际应用区(表面温度),满足客户需求。

注释: 当以上条件要求相反时TS为正